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A highly accurate finite difference method is proposed for the numerical solution of 
partial differential equations that describe initial value problems. It includes a spatial 
smoothing operation and avoids the computational mode. The method is presented here 
for one space dimension and is tested on a linear equation, where it gives highly accurate 
results for the computed phase speed. The solution of a nonlinear equation confirms 
unconditional nonlinear stability. 

1. INTRODUCTION 

The numerical solution of partial differential equations requires some kind of 
discretization. The conventional finite difference methods used for this purpose 
have the property that the field must vary slowly over one grid length to be 
predicted with good accuracy. For a given problem, one can easily improve 
accuracy by using a smaller grid length. However, the numerical error does not 
decrease very quickly with decreasing grid length (see for example diagrams in [I]). 
On the other hand, a shortening of the grid length requires much more computation 
time. 

In this paper another method of improving accuracy is considered. We associate 
several localized basis functions with every gridpoint. The accuracy achieved 
depends on the number of basis functions per gridpoint. In the present paper, the 
simplest cases of this concept are described in some detail. The presentation is 
confined to one space dimension and to the cases with one or two basis functions 
per gridpoint. These two cases will be referred to as the first-degree and second- 
degree method, respectively. The general case will be given in a paper to be 
published later. 

The first-degree method is a special form of the Lax-Friedrichs method. The 
second-degree method shows a new technical feature. At a fixed time the fields are 
characterized by two kinds of constants, the field values at the gridpoints x, and 
the second derivatives at the intermediate points x~+(~/~) . These constants can be 
chosen independently to describe initial values, and there is a method of computing 
both kinds of constants at later times. 
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The characteristic properties of the methods presented can be summarized as 
follows: 

(a) Between the gridpoints the field is represented as a linear combination 
of basis functions. 

(b) Time translation is done by a simple time step. 
(c) There is a spatial smoothing operation. 
(d) The principle of locality is satisfied. The last property means that in 

one time step each gridpoint is influenced only by its nearest neighbors. 

Other methods satisfying condition (a) are the truncated Fourier expansion 
scheme [2], the finite element scheme [3], and the cubic spline method [4, 51. 
Often regularity properties of the basis functions are considered to be essential. 
The truncated Fourier expansion scheme uses analytic basis functions and in the 
cubic spline method they are two times contiuously differentiable. All finite element 
schemes mentioned in [3] use basis functions that are at least once differentiable. 
In the present paper, we only require that the fields be continuous. 

In comparison with other finite difference schemes, the time step is performed 
in a rather unusual way. For example, in [6] and [2] many finite difference schemes 
were reviewed, and in all of these schemes the information on the field I#(x, t) is 
given by the gridpoint values of 4. Consequently, the time translation is done only 
at the gridpoints. This involves the Taylor coefficients (a/at) #J(x, t), and perhaps 
(l/2)(@/8t2) 4(x, t) at the chosen points. The fair representation of the spatial 
derivatives of the field at the new time level must be a consequence of the chosen 
spatial interpolation procedure. 

However, in the second-degree method, the time step consists of two parts. 
First, the time translating step is done by explicit evaluation of the Taylor 
coefficients WW ~(x,+(u~) , 0, (32/2W #JCG+(~~~) ,O and (a2/@x W) ~(x,+(~~~) , 0. 

This procedure will leave the field with discontinuities at the gridpoints x, . 
Therefore, a spatial smoothing operation is applied to reach the old continuous 
form of the field representation. 

Property (b) means that the computational mode, which is present in the 
leapfrog method, is avoided. According to [6,7], one can expect good nonlinear 
stability properties from (b) and (c). 

Many ordinary finite difference schemes are in accordance with the principle 
of locality. However, it is often sacrificed by more advanced schemes, such as 
higher-order [8,9], truncated Fourier series, finite element, or cubic spline schemes. 

When using localized basis functions, it seems reasonable to impose the principle 
of locality because the Courant-Levy condition states that the fastest possible 
waves can only reach the nearest neighboring points in one time step. In the 
present paper the condition of locality leads to a relatively simple formalism and 
keeps the necessary computing time limited. 
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The method is presented in Section 2. In Section 3, the accuracy of wave solutions 
to the linear advection equation is considered. Section 4 gives further computational 
evidence, including a nonlinear example to test the nonlinear stability properties 
of the second-degree scheme. 

2. STATEMENT OF THE METHOD 

The method presented here is applicable to differential equations of the form 

(a/at)r = F(r, (a/ax)& x) 

for the first-degree method, and 

(1) 

@/~?t)r = F(r, (iY/iYx)r, (a2/ax2)r, x) 

for the second-degree method. The vector r is a function of x and t. The function F 
must be an analytic function of its arguments. In most cases of practical importance 
F is actually a polynomial. 

For the sake of simplicity the description of the method will be given for the 
case with a periodic boundary condition 

r(x, t) = r(x + L, t). 

Definition of Finife Dimensional Function Spaces 

On the interval [0, L] we assume N + 1 gridpoints x, ,..., xN with 

xg = 0, x, = L 

and constant distances 

Ax = x,+1 - x, . 

We will also use the intermediate points 

X,+(1/2) = (x"+l + XJP- 

We further define three functions: 

f,(Y) = 1, 

for I y I < AX/~. 

$2(Y) = Yv fdr) = u/w2 - @x2/4)) 

The finite dimensional function spaces S,, and P, are needed, where S, contains 
continuous functions and P, contains functions that may have discontinuities at 
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the gridpoints x, . The index p refers to the degree of the method. We consider only 
the cases p = 1 and p = 2. 

In order to define an element of the set S, , let the numbers c$,, ,..., I#+, , 
4 sr.(l~2) ,..., YL,QI~) be given, with 

#Jo = hv. (2) 

The corresponding function 4(x) of S, is then defined by parabola pieces for each 
interval [x, , x,,,]: 

4(x) = &+I + A fi(x - x,,+(1/2)) + A+1 - 9% 
2 Ax h(x - x”+(m)) 

for 
+ L*“+(112)f& - %+(1/e)) (3) 

I x - X,+(1/2) I < 42 

which chain continuously together as a consequence of f,(fdx/2) = 0 and 
J-,(&AX/~) = -@x/2). Th e d erivatives @/ax, a2@x2 may be formed from (3), 
especially at the intermediate points x,+(1/2) . These are needed for the execution 
of a time step, described later, from which new quantities &+o12) , &V+(l,2) , 
B zx.v+(1/2) 3 v E PL., N - l> will follow. These quantities are then used to define 
a member B(x) of the function space P, having a higher dimension than S2: 

B(x) = &+(1,2) + L+(1l2)(X - -%,(I/,)) + w9 Bss."+(ll2)(x - x"+(l,2))2 

(4) 
for I x - x,+(1/2) I < 42. 

B(x) is composed of parabola pieces in the same intervals [x, , x,+J. In general, 
B(x) will have unremovable jump discontinuities at the gridpoints x, . The elements 
of S, and PI are those members of S, and P, , respectively, that have the property 

+ 22.(1/2) - - b., LN-(l/2) = 0 

or 
B 22.(1/2) - - o,..., L4112) = 0. 

In the following, we also consider the shifted grid, with gridpoints x,+u,,) and 
grid intervals centered at the points x, . The two grids are shown in Fig. 1. In a way 
analogous to the definition of S,, and P, we define function spaces S,’ and P,’ on 
the shifted grid. 

The corresponding constants are denoted by 

4;,2 9*..3 h.l+(1,2) 3 Km.1 ,*'*y &xc.N 

$G'Y..~ AA &!,l ?..., 4ic.N , L ,**-, iL.N * 
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xv-l XV xv.1 

FIG. 1. The original and the shifted grid. 

The periodic boundary condition requires r&+1,21 = c&, . For the definition 
of the corresponding functions #J’(X) and $‘(X) from P,’ and S,‘, respectively, 
which are composed of parabola pieces in the intervals [x,-(,,~) , x,+(~,~)], one can 
use formulas (3) and (4) with half-integer values for v and all functions and 
constants primed. 

Grid Shifting 

Our aim is now to approximate functions of P, by functions from S,, . We have 
in mind the principle of locality, and consequently, look for such a method in 
which the approximating function at a certain point depends only on the values 
of the given function at a distance of at most Ax from the point. 

In the first-degree case, let a function B(x) E PI be given. For the approximating 
function d’(x) E S,‘, we define the constants c&) ,..., &.,+(1,2j by 

6’ ~v+(1l2) v+(l/Z) = (5) 

for v E {O,..., N - 11 and &+f112j = dh2, . 
In the second-degree case, a function B(x) E Pz with corresponding constants 

4 t1j2) 9.-P h-(1,2) 3 &.(1~2) 9.-V &,N-(l~2) and $sz.(114) ,..., &z.N-(1~2) is given. We 
must define the numbers c&,~, ,..., +h+u,2, and &,,, ,..,, &.,, corresponding to a 
function 4’(x) E S,‘. The c$:+(~,~) are again defined by Eq. (5). The #L,,, are deter- 
mined by minimizing the integral Jz;?‘:::i; (4’(x) - $(x))~ dx. This leads to the 
condition 

or 



HIGH ACCURACY DIFFERENCE METHOD 395 

For each value of v we get a linear equation in the single unknown &..,, and obtain 

4’ = _ 2 L.“f(l,2) + &!x.v-(ll2) 25 L+(1,2) - B..v-(112) Zcz,” 16 2 +iz dx * (6) 

For the computation of c$:=,~ one uses Eq. (6) in combination with 

(see Fig. 2). 

4 rx,lv+(1/2) - - L.(1/2) 9 LN+(l/2) = 

A 
- FUNCTION FROM 

---_ FUNCTION FROM 

B 2.(1/z) 

P* 

s: 

FIG. 2. Approximating functions from Pz by functions from S,. 

Thus, we have constructed a mapping Q from P, to S,‘. In a similar way, we get 
a mapping Q’ from P,’ to SO. The transformation equations belonging to Q’ 
can be obtained from Eqs. (6) and (5) by making the unprimed constants primed 
and vice versa, and using these equations with half-integer v. The grid shifting 
operations Q and Q’, which are performed every time step, are the spatial smoothing 
operations of the method. 

Time Translation 

For the time development we use the equation 

r(x, t + At) = r(x, t) + rt(x, t) At + rtt(x, t)(dt2/2). 

For the first-degree method we put 

rtt(x, t) = 0. 

(7) 

To determine the vector functions r&x, t) and rtt(x, t), we insert Eq. (7) into 
Eq. (1): 

(WXt + 4) r(x, t + At) 
= F(r(x, t + dt), (a/ax) r(x, t + At), (a2/ax2) r(x, t + At), x) (8) 
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and expand in a power series in dt. By comparing the coefficients of the different 
At@, one can determine rt(x, t) and rtt(x, t). 

If, for a fixed value of t, the components of r are elements of S, or S,‘, Eq. (7) 
defines functions belonging to P, or P,‘, respectively. In nonlinear cases one must 
neglect terms of sufficiently high order in order to get functions belonging to P, 
or P,‘. 

Thus, the time translation T maps S,, to PO or S,’ to P,‘. The time translation 
method proposed in [lo] is somewhat similar to this method. 

Numerical Procedure 

A time step is just a time translation mapping T followed by one of the grid 
shiftings Q or Q’. For example, one obtains in this way a function belonging to S,’ 
from a function in S,, . In the next time step one again obtains a function of S, . 

It is convenient to perform the computation in three steps. They will be described 
here for the second-degree case. The first-degree case can be obtained by dropping 
the second-order terms in the following equations. 

We consider the case that the fields are given as functions belonging to S, at 
time level n. For the time level iz + 1 they must be represented as functions 
belonging to S,‘. The other case can be obtained from the following formula by 
using half-integer subscripts and making primed constants unprimed and vice versa. 

First, the interpolation step is performed. This will give all spatial derivatives of 
a field P(x) at x~+w~) . &,v+t1,2J is already given. The other derivatives are 
computed according to Eq. (3): 

K+h/2) = Cd:+1 + h’Y2 - W/8) Gr,v+(l,e) 
KL+(1k?) = (K+1 - dV”>/Ax. 

The time translation step will then yield a function @‘l(x) E Pz . Only this step 
depends on the equations to be solved. In Eqs. (9), (1 l), and (13), the space index 
has the constant value v + (l/2) and will be omitted. For every field #(X, t), 
Eq. (7) is implemented by 

(9) 



HIGH ACCURACY DIFFERENCE METHOD 

The missing coefficients in Eq. (9) will be given for two examples: 

(a) For the linear advection equation 

ww~ = Wx>~ 
one obtains 

An = 4zn Kx = K&T 4x = Kx * 

(b) For the nonlinear equations of a barotropic fluid 

- 
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(10) 

(11) 

&(H- U) (12) 

one obtains 
Utn = - U” 17~” - H,” 

u:, = -U”U,, - U,“U,” - H&! 

U,“, = -U,“U,” - U”U& - Hrz 

H,” = -(H,“U” + HW,“) 

cz = -(H:JJ” f H”U,“, + 2HznUzn) 

(13) 

H; = -(H,“U,” f HLU” + H”U,” f H,“U,“). 

It is possible to evaluate terms like +T,, in Eqs. (9). These terms of third and 
higher order are neglected in the present paper. For the linear case (Eq. (10)) they 
are actually zero. 

Lastly, the spatial smoothing step can be done using Eqs. (5) and (6). The 
right-hand sides of these equations are determined by Eqs. (9). 

3. WAVE SOLUTIONS OF THE ADVECTION EQUATIONS 

We choose Ax = 1. The initial values are given in the first-degree case by 

$y” = AeiCh/Uv 

and in the second-degree case by 

4; = Ae”(2”‘L)’ 
&r.y+(l~2) = Be 

i(2nlLb 
. (14) 

The wave solution of Eq. (10) is 

$yx, f) = A~ezc2n/L)cr+t,. (15) 
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For a given A = A”, Eqs. (14) and (3) will approximate Eq. (15) at t = 0 only for 
a special choice of B. The general combination of A and B will specify the initial 
values for a wave solution (Eq. (15)) plus a small scale feature that will be smoothed 
out quickly. After 2n time steps, one has in the first and second-degree cases, 

or 

respectively, where 

U=cos + +2idtsin($) 
( 1 

and 

cos +- +2dtisin +, ( 1 ( 1 

j sin + (eicenlL) _ I), 
( ) 

F A ti sin (+) - $ cos (+--) 
* (19) 

The nonhermitean matrix V has the eigenvalues 

Al,2 = C, cos ($-) + C,i At sin (+) (20) 

*a (7 C, cos L + C,i At sin (%))’ + CJO.25 - AP) sin2 (+)) 
112 

with C, = 7132, C, = 41/16, C, = 25116, C, = -918, and C, = 2512. 
The stability condition for the solution of Eq. (10) is At < 0.5&c in the first- 

degree case and At < 0.24AX in the second-degree case. 
In the second-degree case the two eigenvalues represent two scales with different 

phase velocities c and damping factors A,+JA, . The comparison with the exact 
values C,, = - 1 and Az+JA,O = 1 is shown in Figs. 3 and 4. 

The values of the relative velocity for the first-degree method (Fig. 3c) are 
comparable to those of the Eliassen grid (see diagrams in [l]). The values of 
A,+,/A, (Fig. 3d) reflect an excessive damping even of the longer waves. This 
makes an application to practical problems difficult. The first-degree method 
thus shows features similar to the one-sided difference scheme discussed in [I 11. 

The second-degree method (Figs. 3a and 3b) gives a considerable improvement 
when compared with the Eliassen grid or the first-degree method. For a special 
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FIG. 3. Relative phase velocity and damping factors for first and second-degree method. 
(a) Relative phase velocity C/C, of second-degree method. (b) Damping factor A,,+JA,, of second- 
degree method. (c) Relative phase velocity C/C’, of first-degree method. (d) Damping factor 
A,+JA, of first-degree method. 

-cgJ 
AX' 09 ofl 07 0.6 

02: 'il 
0.1 

-&AJ,, 

/ Ial 

Ax 06 10 12 14 15 LIA% 

0.2 :I/,( 0.1 / 
lb1 

5 10 15 L/AX 

FIG. 4. Relative phase velocity and damping factor corresponding to the second eigenvalue 
of the second-degree method. (a) Damping factor A,+JAn . (b) Relative phase velocity C/C,. 

value of d t, relative phase velocities are given in [2] for several more advanced 
schemes. For this special At the results from the second-degree method are 
comparable to those obtained from a truncated Fourier scheme. For example, the 
relative phase velocity errors are smaller than l/1000 for L > 8dx in the truncated 
Fourier case, and for L > 4Ax in the second-degree case. 
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When comparing the damping factors from Fig. 3b with those of other dissipative 
schemes, such as the Euler backward method (see diagram in [l]), one finds a 
considerable improvement. On the other hand, there are many undissipative 
schemes. In nonlinear cases with realistic initial values these schemes require 
explicit dissipation terms to maintain nonlinear stability. The size of these terms 
will depend on the situation being considered. The dissipation thus introduced 
should be compared with the artificial damping given by Fig. 3b. 

The second eigenvalue is a special feature of the second-degree method. The 
corresponding phase velocities and damping factors are plotted in Fig. 4. This 
eigenvalue causes a strong damping of some parts of the field. The role of this 
eigenvalue is illustrated by Fig. 5. It shows the action of the spatial smoothing 
operation in the L + co case. 

FIX) 

-__-_ - ____ ___- ______- --- -.,r 

w 
I 2 3 x 

FIG. 5. Damping out of strong variability. -, initial field; - - - -, field after six grid 
shiftings with dr = 0. 

4. FURTHER TEST CALCULATIONS 

Solution of the Advection Equation with Positive Initial Values 

Further solutions of Eq. (10) are now given for the positive initial values shown 
in Fig. 6a. The computation was done on a grid with 31 points and periodic 
boundary condition. The length of one period was therefore L = 3OAX. For the 
solution of the linear equation we consider t, x, and $ as dimensionless quantities 
and again choose AX = 1. 

The forecast time was always chosen in such a way that the exact solution of 
Eq. (10) would give the same diagram as the initial condition. The result for the 
first-degree method is given in Fig. 6e. It gives a function that is still positive, but the 
maximum has become much smaller and has spread out over the whole interval of 
definition. Looking at the results from the second-degree method, represented in 
Figs. 6b and 6c, one sees that the time translation acted simultaneously as a 
smoothing operation. The sharp peaks of the initial field are no longer present. 
The deformations of the field after time translation are not much different from 
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la1 

DT=O 
-60 Grid 5h1ftq~ 
----500 Gr,d Shlftlngs 

FIG. 6. Numerical solution of the advection equation with positive initial values. (a) initial 
condition; (b) grid shiftings without forecast in second-degree method; (c) time translation with 
second-degree method; (d) conventional methods (Eliassen grid) central difference approxima- 
tion; (e) first-order method. 

those effected by the grid shiftings alone. The field remained positive to a good 
approximation, while the spreading out is much less than in the first-degree case. 
Fig. 6d illustrates the common model errors associated with the numerical solution 
of the advection equation [2, 121. For this purpose we used the centered difference 
approximation (solid) 

4:+l = +:-l+ 2dx 2%. <+a, - $K-1) 
and the Eliassen grid (dashed) 

There are other methods of improving numerical advection (see for example 
L&8, 11, 14). 

A quantitative comparison to some of these methods was done using wave 
solutions of the advection equation. 

5grlr9/4-5 
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Results of a Nonlinear Computation 

To test the nonlinear numerical stability properties we consider a barotropic 
fluid (Eqs. (12)). The initial values are 

and 
U(x) = U, = 190.5 km/hr (21) 

H(X) = H, = 2.0230296(381 km/hr)2. 

The same initial values were used in [13] in connection with orography, coriolis 
force, and periodic boundary condition. Here, we impose the rigid wall boundary 
conditions 

U(0) = U(L) = 0 g H(0) = & H(L) = 0, (22) , 

which pose a hard test for stability. 
Eqs. (12) were solved by the second-degree method with LIX = 381 km, 

At = 5 min and L = 29dX. Eqs. (22) were implemented only in the original grid 
(not in the shifted grid). This is done after the time translation step when the fields 
are represented as functions belonging to Pz . The formulas are given for the X = L 
boundary (the time index is dropped): 

~5,,2 = -Q57,2 &,* = ~5,,2 
~x.wz = ~‘r,57/2 %%I/2 = -rr,*m 

~‘22.58/2 = -L.Em f7ss.59/2 = K!Z.67/2 - 

During the time development, which is shown in Fig. 7, different types of 
movement occur. After approximately 20 days the H field is nearly equal to the 
initial condition, while the U field is nearly zero. 

1 H [I381 km/h?] 

- ,;5h 
3.w ------ , i 10” 

- -1~500h 

/’ 
2 5- I’ 

, 
I 

I 
-. ._... --.- 

I I - 
10 20 30 X[AX] 

FIG. 7. The H-field at various times. 
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4. CONCLUSIONS 

The second-degree method exibited a combination of smaH phase velocity errors, 
moderate spatial smoothing of the larger scales, and good nonlinear stability 
properties. A comparison of the first- and second-degree cases indicates that the 
solution converges quickly with the degree parameter. This might be a motivation 
to investigate the third-degree case. 
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